Math 2050, HW 3 (due: 24 Oct, before 23:59)

- (1) If $x_1 < x_2$ are some real numbers and $x_n = \frac{1}{4}x_{n-1} + \frac{3}{4}x_{n-2}$ for (2) Let $x_1 = 1$ and $x_{n+1} = 1 + \sqrt{x_n - 1}$ for all $n \in \mathbb{N}$. Show that
- the sequence is convergent and find the limit.
- (3) Suppose all subsequence of (x_n) has a sub-sequence converging to 0. Show that $x_n \to 0$ as $n \to +\infty$.
- (4) Suppose (x_n) is a sequence of positive real number. Show that

$$\limsup_{n \to +\infty} x_n^{1/n} \le \limsup_{n \to +\infty} \frac{x_{n+1}}{x_n}$$

provided that the limsup on the right hand side exists. Show that we cannot improve \leq to = in general by providing an example.

- (5) Suppose $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence such that x_n is an integer for any $n \in \mathbb{N}$. Show that there is N such that x_n is a constant for n > N.
- (6) Let $p \in \mathbb{N}$ be fixed. Construct a example of (x_n) which is not cauchy but satisfies $|x_{n+p} - x_n| \to 0$ as $n \to +\infty$.